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LETTER TO THE EDITOR 

On the relation between classical and quantum critical 
systems 
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D e p m e n t o  de Fisica, lnstituto de CiCcias Exatas, Univenidadde Federal de Minas Cecais, 
CP 702, CEP 30161-970 Belo Horizonte. Brazil 

Received 3 June 1993 

Abslracl. We consider critical asymptotiwlly hiemchical quantum models and show that the 
probability distribution of the apprnpriolely scaled squm of the total spin converges. as the 
number of spins tends to infinity. to the same function i n  the corresponding Classical systems, 

It is generally believed, mainly based on heuristic arguments [ 5 ] ,  that the critical behaviour 
of a statistical mechanical system does not depend on the way, classical or quantum- 
mechanical, employed to describe it. As a consequence, one should expect quantum- 
mechanical models to fall into the same universality classes as their classical correspondents, 
presenting the same critical exponents and scaling functions. Sewell [7] has made use of 
the fact that the components of the L-block spin variables critically scaled (non-central 
limit scaling) commute in the limit L 4 00 to show quite generally that the long-distance 
behaviour of critical quantum systems is classical in the sense that it can be formulated in 
terms of probability measures. However, the question of the relation between this behaviour 
and the one corresponding to the classical version of the system still lacks rigorous proof. 

Here we consider the spin-; case of a certain class of models, called asymptotically 
hierarchical models in the terminology of [SI, and take as the classical analogue of 
these models those obtained by replacing each quantum-mechanical spin by a classical 
three-dimensional vector-valued variable in the Hamiltonian. Specifically, we study the 
probability distribution of the appropriately scaled square of the total spin for critical 
quantum systems and show that i t  converges, as the number of spins tends to infinity, 
to the same function in the corresponding classical systems. Thus we exibit explicitly a 
property of statistical-mechanical systems which at the critical point does not depend on 
whether one uses a classical or quantum-mechanical description. 

The asymptotically hierarchical models are generalizations of Dyson’s hierarchical 
models, originally introduced in [4]. The classical version of these models, with spins 
taking values + I ,  at the critical point was first studied in a rigorous way in the fundamental 
paper by Bleher and Sinai [3]. Vector-valued classical spins at low temperatures were 
analysed by Bleher and Major in [ 1,2] and by Schor and O’Cmoll in [6], using a different 
hierarchical model. 

To each site of the lattice An = [ l ,  2, . . . , 2”} associate a spin variable which may 
be a classical or quantum-mechanical variable. A member of the class of asymptotically 
hierarchical models is specified by an initial Hamiltonian H,,(Sj,. . . , SZW) defined on Ana. 

0305.4470/93/160749t04$07.50 @ 1993 IOP Publishing Lld L749 



L750 Letter to the Editor 

The Hamiltonians Hn(S1, . . . , S p )  on A,, for n > no are given recursively by 

(1) 

We will assume that H., is rotationally invariant. As shown in Dyson's paper [ 4 ] ,  the 
thermodynamic limit exists if c < 2 and there is a phase transition if c > 1.  We assume in 
the following 1 < c c 2. 

Let p,?(.: j3) be the distribution of ziEL Si (which depends only on I xi,,, Sil) in 
the classical case at inverse temperature /J. It follows directly from (1) that it satisfies the 
recursion 

where& is the unit vector in the one-direction and Z,"a@) is the classical canonical partition 
function on the A, lattice. 

Proceeding heuristically as in [8], we expect that above the critical temperature 1s Iz - 2" 
as n + 00 and hence the exponential in (2) should be irrelevant in this case. On the other 
hand, below the critical temperature lslz - 2'" and the exponential is dominant. At the 
critical temperature we may expect 1s Iz - (4/c)". Let An = (&/2)" and define 

(3) 
8n 

g?"(x; /J) = ~ A ~ 3 Z ? " ( j 3 ) ~ p ? 1 ' ( A R ' ~ ;  j3). 

In terms of the quantity above, we may express the canonical ensemble average of a 
function of the total spin properly scaled as 

From (2) the following recurrence may be inferred: 

Defining the new variables uI = r and v2 = J(4/c)x2 + r2  - (4/&xr cos@, one may 

g t ' ) ( x ;  j3) = exp(j3x') /" /" gf!)l(~~; Bjgf!),(uz; j3)dui duz. (6) 

write 

l"r-u2lC(Z/fi)x<",+"a 

The Gaussian fixed point of the recursion above is 
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where a(p) = @/(2 - c). 
Using the techniques of [SI one may show that the convergence of &I)(.; p)  to the 

distribution above really occurs in the sense of probabilities for fi  c c < 2. The reason 
for this interval may be found in the remark to the theorem stated below. 

We consider now the quantum case. Let A!) = ((j - 1)2p + 1, ( j  - 1)2p +2, .  . . , ( j  - 
1)2p + 2”) for 1 < p < n and 1 < j < 2“-P. Define 

$1 = si. (8) 
ieAk’’ 

Then, as pointed out in Dyson’s original paper [4], the set 
{ ( j ~ ! ) ) ’  : 1 < p < n, 1 < j < 2”-”; py) ,3 ]  

(where is the thiid component of pi’)) is maximally commuting in Cz“ and the 
common eigenfunctions diagonalize Hn if H,, depends only on &). 1 < p < no, 
1 < j < 2”o-P. Denoting the eigenfunctions by I[.$)); m ) ,  we have 

(p :Q)z l (ey ] ;  m )  = p(q) + l)I($j)}: m) 

pp ~ [ t ,  ( j )  );m) = m l { t y ) } :  m). (9) 
since jL l ( j )  - - j ~ ~ - ~  (2j-1) + $1; (1 < p < n). we must have ](,?!;I’ - t,”l: I < e!’ < 

E (0, 11. Also, the possible values of m are restricted to 

In terms of the basis (9) the quantum canonical ensemble average of a function of 

e”’-” + e“” and initially P-1 P-l 
Iml < e;?. 
QL:”)~ = (&,. s,)’ is 

y-1 

e=o 
(F( ( / .LyN:?  = F ( t ( L  + 1))(2l+ l)p%e; B )  (10) 

where pA$(.;,p) : (0,. . . ,2”-’} + R is the distribution of tit1. Again, from (1) we get 
the recursion 

Let 

giq’(x; j?) = ( 4 / ~ ) h , ’ Z : ~ ) ( B ) p ~ ~ ) ( A , ’ x ;  B)  (12) 
for x E A., where A, = { A n t  : 0 < e < 2”-‘). The function defined above is analogous 
to gF1)(.; B )  in the classical case, as may be seen by expressing ensemble averages as 

and comparing with (4). One may also check whether the recursion 

g;$(x; B )  = exp [ B x ( x  + Ad1 82!l(xl; B)g:?l(xz: b’) (14) 
XI.X1EAn-I 

Ir,-x*l<j;x<x,+n 

is formally identical to the classical one in the limit n + 00. Thus, provided the 
heuristic arguments for the quantum case can be justified, we see that the distribution 
of limo-,m(An Cisan Si)2 at the critical temperature is the same whether one uses classical 
or quantum statistical mechanics. 
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Theorem. For each 2'iz e c e 24/5 there is a non-void set of initial Hamil- 
tonians such  that &(.x; ~~ ~ ~ pcr) ~~~ (appropriately *~~ ~, , ~~~ ~ normalized) ~ ~~ ~ ~ ~ ~~~ converges ~ ~~ ~ in probability ~~ to 
~ a . ( ~ c ~ ) ' / * , E x p [ - a . ( j 3 ~ ~ ) x  1 at critical inverse temperature pCr > ~ o .  

Remark. The study of the flux defined by transformation (6) in  the vicinity of the Gaussian 
fixed point shows that there is one and just one relevant direction for 2'/* < c < 2. Provided 
this relevant direction can be properly controlled, one might expect to prove the existence 
and thermodynamical stability of the fixed point. However, within our method of proof, 
which consists in studying the recursion (14) adapting the methods of the scalar Si = f l  
case 181, the region Z4/5 < c < 2 could not be handled. 

Proof (sketch). We deal separately with large fields and also with very small fields, so 
that the perturbative region corresponds to intermediate values. Fix no and suppose that 
gi:'(.; p )  is close enough to the fixed point (7) in the sense that it admits a good bound 
on the sinall fields region, decays quickly enough for large fields and in the intermediate 
region the perturbation to the fixed point may be expanded in the basis provided by the 
eigenfunctions of the linearized transformation up to order N ( N  large but fixed) with an 
adequate bound on the remainder term. We prove inductively that if gF)(,: B )  satisfies 
similar conditions for no < k < n and j 3  E [p'k', By ' ] ,  i t  satisfies the same conditions for 
k = n+ 1 and j 3  E [j3"+". @')I c [j3!', j3:'] with improved bounds. The choice of these 
intervals must be such as to control the growth in the relevant direction, according to the 
Bleher-Sinai mechanism [8]. The small-field region shrinks exponentially with n and the 
intermediate region grows as ,hi. In  the intermediate region we must control the perturbative 
terms setting up a compromise between L? decay and uniform decay by means of a lemma 
of Tauberian type. At each step, a careful analysis of the error terms is required. These 
terms arise due to the linear approximation, the finiteness of the perturbative region and 
the approximation of sums by integrals. It turns out that the latter can only be successfully 
handled if c < Z4l5, since they are genuinely of order A,, = (&/2)" and therefore naturally 
greater than the controllable part of the perturbation, which decays as (2/c2)", for c > Z4/s. 
Iteration of the induction hypothesis eventually leads to the proof of the theorem, with 
fiCc E n,",,,rs?), j3:)i. 

A detailed account of the proof will appear elsewhere. 

This work was partially supported by Conselho Nacional de Desenvolvimento Cientifico e 
Tecnol6gico (CNPq), Brazil. 
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